Temporal Unmixing of Dynamic Fluorescent Images by Blind Source Separation Method with a Convex Framework

نویسندگان

  • Duofang Chen
  • Jimin Liang
  • Kui Guo
چکیده

By recording a time series of tomographic images, dynamic fluorescence molecular tomography (FMT) allows exploring perfusion, biodistribution, and pharmacokinetics of labeled substances in vivo. Usually, dynamic tomographic images are first reconstructed frame by frame, and then unmixing based on principle component analysis (PCA) or independent component analysis (ICA) is performed to detect and visualize functional structures with different kinetic patterns. PCA and ICA assume sources are statistically uncorrelated or independent and don't perform well when correlated sources are present. In this paper, we deduce the relationship between the measured imaging data and the kinetic patterns and present a temporal unmixing approach, which is based on nonnegative blind source separation (BSS) method with a convex analysis framework to separate the measured data. The presented method requires no assumption on source independence or zero correlations. Several numerical simulations and phantom experiments are conducted to investigate the performance of the proposed temporal unmixing method. The results indicate that it is feasible to unmix the measured data before the tomographic reconstruction and the BSS based method provides better unmixing quality compared with PCA and ICA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...

متن کامل

Convexity and fast speech extraction by split bregman method

A fast speech extraction (FSE) method is presented using convex optimization made possible by pause detection of the speech sources. Sparse unmixing filters are sought by l1 regularization and the split Bregman method. A subdivided split Bregman method is developed for efficiently estimating long reverberations in real room recordings. The speech pause detection is based on a binary mask source...

متن کامل

Penalty Function Approach for Constrained Convolutive Blind Source Separation

A new approach for convolutive blind source separation (BSS) using penalty functions is proposed in this paper. Motivated by nonlinear programming techniques for the constrained optimization problem, it converts the convolutive BSS into a joint diagonalization problem with unconstrained optimization. Theoretical analyses together with numerical evaluations reveal that the proposed method not on...

متن کامل

Blind source unmixing in multi-spectral optoacoustic tomography.

Multispectral optoacoustic (photoacoustic) tomography (MSOT) is a hybrid modality that can image through several millimeters to centimeters of diffuse tissues, attaining resolutions typical of ultrasound imaging. The method can further identify tissue biomarkers by decomposing the spectral contributions of different photo-absorbing molecules of interest. In this work we investigate the performa...

متن کامل

Multi-Channel l1 Regularized Convex Speech Enhancement Model and Fast Computation by the Split Bregman Method

A convex speech enhancement (CSE) method is presented based on convex optimization and pause detection of the speech sources. Channel spatial difference is identified for enhancing each speech source individually while suppressing other interfering sources. Sparse unmixing filters indicating channel spatial differences are sought by l1 norm regularization and the split Bregman method. A subdivi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015